




Body-wall preparations

Ice-cold leech saline (Muller et al. 1981) anesthetized each animal
for the duration of the dissection. At the beginning of an experiment,
the cold saline was replaced by room temperature saline that contin-
uously superfused the body wall preparation. Preparations produced
reliable local bends for �6 h when stimulating the body wall at
3.5-min intervals. Previous studies found no sensitization or habitu-
ation in motor neurons when eliciting local bending every 2 min
(Lockery and Kristan 1991).

The body-wall preparations used in this study are similar to those
used previously (Kristan 1982; Lewis and Kristan 1998a; Mason and
Kristan 1982; Nicholls and Baylor 1968). Briefly, we dissected three
segments from the leech midbody region (Fig. 1A), then cut the three
segments along the dorsal midline. After removing the internal con-

nective tissue and viscera, we flattened the body wall and pinned it
skin-side-up on a silicone elastomer (Sylgard, Dow Corning, Midland,
MI)-coated plastic petri dish (Fig. 1B). The anterior and posterior
ganglia were removed, leaving the central segment innervated by a
single ganglion. We secured the anterior and posterior edges of the
body wall to the dish using 8–12 Minuten pins, but we used only 5
pins to secure the dorsal edges to minimally impede longitudinal body
wall movements. This preparation produced large, replicable local
bend responses similar to those in intact, unpinned preparations.

Optical recording

We recorded the image of the body-wall preparation (Fig. 1B)
through a Wild dissection microscope using a C-Mounted Hitachi

FIG. 1. The experimental preparation and
experimental procedures. A: an intact leech
has a cylindrical body that tapers at both
anterior and posterior ends. Running ven-
trally along its long axis is its CNS; each
swelling along the nerve cord corresponds to
a single segmental ganglion. We used a body
wall preparation consisting of 3 segments
taken from the middle of the animal with the
ganglion innervating the central segment be-
ing the only one left intact. After cutting
along the dorsal midline, we flattened the
body wall and pinned it skin-side up in a
recording chamber. In this panel and many
subsequent ones, the letters D, L, and V
signify mid-dorsal, mid-lateral, and mid-
ventral locations on the body wall, respec-
tively. B: we viewed the preparation through
a dissecting microscope with an attached
CCD camera. Images were captured on 1
computer while the electrophysiological re-
cordings and the signals to the force control-
ler were captured by a 2nd computer. TTL
pulses synchronized image frames with
times of stimulus presentation. C and D: an
adaptive histogram equalization routine in-
creased local contrast and provided many
features for subsequent tracking. Optic flow
fields were calculated to determine the
movement of the body wall over time from
successive images collected at 10 Hz. An
optic flow field region of interest (shaded in
C and D) was chosen (see METHODS) and
remained fixed for the duration of the exper-
iment. E: for each optic flow vector in the
region, we took the projection along the long
axis of the animal and plotted these projec-
tions over body wall location. The gray lines
are the individual traces and the black line
represents the averaged values. The distance
moved (y axis) has been divided by the
average width of an annulus so that the units
are number of annuli. F: a single local bend
profile was created by smoothing the aver-
aged distance profile with a Gaussian filter.
G: averaged, smoothed profiles of a single
response over time, sampled at 10 Hz for
1.5 s. The fifteenth profile was the first one
that contained the maximal value (peak re-
sponse, circle) obtained in this response. H:
a graph of 48 peak response profiles in
response to stimuli at 7 different amplitudes
obtained in 1 preparation. The peak response
from G is shown as a thick line marked with
a circle at its peak.
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KP-M1 monochrome CCD camera (Image Labs International, Boze-
man, MT). The images (640 � 480 pixel resolution) were captured at
10 Hz and digitized using a Scion LG-3 frame grabber card and
image-acquisition software (Scion Corporation, Frederick, MD) on
either a PC or Macintosh computer (Fig. 1B). On a different computer,
5-V TTL pulses from AxoGraph 4 or Clampex 8 software (Axon
Instruments, Union City, CA) synchronized video acquisition with the
stimulus controller and the electrical recordings. Image capture lasted
for 2–2.5 s and began 0.5 s before stimulus presentation for a total of
20–25 images/trial.

Stimulus: force controller

Previous studies of the local bend response have applied pressure to the
leech using solenoid-driven nylon filaments (von Frey hairs) (Lewis and
Kristan 1998b; Zoccolan and Torre 2001). Despite their utility, von Frey
hairs have several shortcomings: on a given trial, there is no way to
monitor the actual force delivered; the force applied by a von Frey hair
varies with the humidity and, to a lesser degree, temperature of the
filament (Andrews 1993); to vary touch intensity, one must switch
filaments because a given hair produces only one force intensity; and the
filaments that produce different forces have different cross-sectional
areas, so it is not possible to control force and surface area independently.
To overcome these difficulties, we used a Dual-Mode Lever Arm System
(Aurora Scientific, Ontario, Canada, Model 300B) to deliver specified
force waveforms to the leech body wall (Fig. 1B). The force controller
takes a user-defined time-varying voltage signal as input and, within 1.3
ms, its lever arm produces forces from 0 to 500 mN, as determined by an
input voltage signal (50 mN/V). A feedback loop keeps the delivered
force within 1 mN of the desired level.

We stimulated the skin of the leech with a 28-gauge needle that had
a small (�1 mm2 diam) bead of epoxy on its tip (Fig. 1B). The head
stage of the force controller was mounted on a micromanipulator
(Narishige International, East Meadow, NY). We used AxoGraph 4 or
Clampex 8 to generate waveforms that produced force steps of
varying duration and intensity. The forces delivered were monitored
using the same programs, and we eliminated those trials in which the
measured force deviated from the desired force by �5%; this occurred
on �3% of all trials.

Our mechanical stimulator had a much larger cross-sectional diam-
eter (1 mm) than the von Frey hairs used in previous studies (Lewis
and Kristan 1998b). Hence to be sure that our stimuli produced
comparable effects to those used in previous studies, we chose our
stimulus range to correspond to that which would produce similar P
cell (the mechanoreceptors mainly responsible for the local bend
response) spike counts to those observed in studies using the smaller-
diameter von Frey hairs (Kristan 1982; Lewis 1999; Lewis and
Kristan 1998a; Zoccolan and Torre 2002; Zoccolan et al. 2001, 2002).

Image processing and analysis

ADAPTIVE HISTOGRAM EQUALIZATION. To use optic flow for track-
ing movement of the leech body wall over time requires feature-rich
images (Zoccolan et al. 2001). The dorsal body wall is richly pat-
terned, but the ventral surface is more uniform in texture and color
(Fig. 1C). To reveal distinguishable features in the ventral region, we
processed each image with an adaptive histogram equalization (AHE)
routine implemented in an Adobe Photoshop plug-in (Reindeer
Graphics, Asheville, NC). The AHE algorithm enhances local image
contrast by scaling pixel intensities to use the full scale of possible
pixel intensities in localized regions of the image, thereby increasing
contrast. AHE has been used to reveal important anatomical details in
a variety of biological tissues (Buzuloiu et al. 2001; Morrow et al.
1992; Paranjape et al. 1992, 1994;), and we observed significant
improvements in tracking ventral body wall movements after AHE
processing. We tuned the AHE parameters using one body wall
preparation, and then we used the same parameters for all the

preparations because all leech body wall had similar patterning. The
increase in distinctive features in the ventral region can be seen by
comparing the unprocessed and processed images in Fig. 1C.

OPTIC FLOW ANALYSIS. Previous studies introduced a correlation-
based optic flow algorithm to characterize leech body-wall move-
ments from video recordings (Zoccolan and Torre 2002; Zoccolan et
al. 2001, 2002). We used a different, gradient-based algorithm (Lucas
and Kanade 1981) that produces a very dense optic flow field for each
pair of images. This algorithm provides very accurate motion estima-
tions over a wide range of conditions (Barron et al. 1994). We used
the optic flow algorithm in conjunction with a course-to-fine frame-
work to improve the motion estimates (Beauchemin and Barron 1995;
Bergen et al. 1992). Briefly, the full size images (640 � 480 pixels)
are scaled down (i.e., 320 � 240 and 160 � 120 pixels), effectively
producing spatially averaged image sequences. The OF algorithm is
applied to these “sub-sampled” images to produce gross motion
estimates. These estimates are then used to constrain the motion
estimates made on the full-size image sequence, producing more
uniform optic flow fields and reducing the likelihood that local pixel
noise will result in poor tracking. The optic flow code was written in
ANSI C by Dr. Ming Ye (Ye and Haralick 2000). We obtained similar
but denser optic flow fields compared with those generated previously
(Zoccolan et al. 2001) when we tested both algorithms on the same
body-wall image sequence.

BEND PROFILE CALCULATION. For each trial, we captured images at
10 Hz for 2.0–2.5 s. These 20–25 frames spanned the time before,
during, and after stimulation. We applied the AHE routine to each
image in the sequence, then calculated optic flow fields between
successive frames (i.e., the 2nd image was compared with the 1st; the
3rd was compared with the 2nd, etc.). After calculating the move-
ments of the entire body wall, we selected a rectangular region of
interest (ROI) that showed robust movement and was free from edge
or pinning artifacts (Fig. 1C). The ROI spanned one to two annuli
along the long axis of the leech and included its entire circular axis.
(An annulus is a raised ring of the leech body wall; there are 5 annuli
per body-wall segment.) For a given leech, the selected region
remained fixed for all trials.

Within the ROI, we monitored movements produced primarily by
the longitudinal muscles, which shorten the longitudinal axis of the
body wall (Stuart 1969, 1970). Hence, for each pixel in the ROI, we
extracted the component of the movement that ran parallel to the
leech’s long axis. The average movement at each circumferential
location in the ROI created a profile of longitudinal movement
between any two images (Fig. 1, E and F). We smoothed these motion
profiles with a Gaussian filter. For each trial, we calculated these
motion profiles at each time point, generating a three-dimensional
characterization of the local bend over time (Fig. 1G). Because the
movement peaked at �1.5 s after stimulus onset and held steady for
some time, we used the motion profile at 1.5 s to represent the bending
response and called this the bend profile. Figure 1H shows the set of
48 bend profiles obtained from a single body wall in response to
stimuli at the same location but of varying intensities.

We eliminated “outlier” bend profiles, defined as those that contained
obviously impossible deformations of the body wall or those in which the
SE of the optic flow field exceeded three pixels (a single annular ring is
20–40 pixels wide). Viewing the original video frames, outliers always
had obvious and technical problems such as water splashing in the dish
or large variations in the illumination intensity.

Formally, bend profiles (Fig. 2, A and B) are M-element vectors, in
which M is the number of pixels around the circumference of the body
wall. M varied between 400 and 640, depending on the magnification
used and the size of the leech. The units used for displacement in bend
profiles were originally pixels, which were then normalized to the
number of pixels per annulus for each leech so that all displacements
were ultimately measured as numbers of annuli. We converted the
units used to measure circumferential location from pixels to degrees
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by setting the pixel at the left edge of the dorsal body wall to 0°, the
pixel at the ventral midline to 180°, the one at the right edge of the
dorsal body wall to 360°, and fitting a line to these three points. The
movement at pixel i can be represented in polar coordinates as

zi � ��i, Ri�

where Ri is the magnitude of the movement at location �i. The
movement at pixel i was sometimes represented in Cartesian coordi-
nates using x�i � (xi, yi), which describes the x and y components of the
bend at pixel i (xi � Ri cos�i and yi � Ri sin�i).

Quantifying responses: four methods

We used four methods to get compact descriptions of the high-
dimensional bend profiles.

MAXIMUM. The maximum is the location (in degrees) and magni-
tude (in number of annuli) of the peak of the bend profile (Fig. 2C).

CIRCULAR CENTER OF MASS. The circular center of mass V� (Fig. 2C)
is the vector sum of the movement over all M pixels divided by the
total number of pixels

  0.4  0.8
  0.1  0.2

D    

0

M
o
v
e
m

e
n
t 
(#

 A
n
n
u
li)

Movement (# Annuli) Movement(# Annuli)

A B

ED

C

F G

+

1,2 3 

 Max

CM Bend 1

Bend 2

Bend 3

M
o
v
e
m

e
n
t 
(#

 A
n
n
u
li)

Body Wall Position

L DVL

L

LLD

D

D V

V

M
o
v
e
m

e
n
t 
(#

 A
n
n
u
li)

0

0.2
0.2

0.4

0.4

0.6

0.6

0.8

Body Wall Position

0.2

0

0.4

0.6

L D

LLLL

VV

L V L

L

V

L

L V L
L

V

C
M

 P
o
s
it
io

n

Stimulus Position

M
a
x
im

u
m

 P
o

s
it
io

n

Stimulus Position

FIG. 2. Using response maximum (Max)
and center of mass (CM) to quantify local
bending responses. A: a representative ex-
ample of trial-by-trial variability in the local
bending response profiles. The 12 lines are
individual responses to stimuli delivered at
the single location marked on the abscissa.
The stimulus was a force step of 200 mN
lasting 200 ms. The thick yellow line is the
mean of the responses. B: mean response
profiles to stimuli at the 5 locations marked
on the abscissa. The touch locations are 108,
144, 180 (the ventral midline), 216, and
252°. The colors of the traces correspond to
the colors of the markers that indicate the
touch location. C: Max and CM of the local
bending response. Two of the response pro-
files (1 and 2) were generated by stimuli at
the ventral midline (at 180°); the 3rd re-
sponse was generated by stimulating at site
3, to the right of the ventral midline (at
257°). The maxima are marked with trian-
gles. The centers of mass are marked with
circles whose colors match the colors of the
appropriate line. D: polar representation of
profile Max for 60 trials from 1 experiment.
The responses are color-coded by stimulus
location, which are marked on the circular
axis. E: polar representation of profile CM
for the same 60 trials as D. The color coding
is the same as D. F and G: cartesian repre-
sentations of profile maxima and centers of
mass for the same experimental data pre-
sented in D and E. The color coding for
stimulus position is the same as D.
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x� i

where x�i is the Cartesian representation of the displacement at pixel i.

COSINE. We fit the local bend profile with a cosine of the form

C��� � A cos �� � �� � S

where A is the amplitude of the cosine, � is the phase, and S is the
vertical shift. The maximum of the best-fit cosine is at position � and
the magnitude at its peak is A � S. We fit our data to C(�) using a
nonlinear least-squares algorithm implemented by Matlab’s lsqcurvefit

function (Fig. 3A). This is similar to the cosine fit used previously
(Lewis and Kristan 1998b) although we use an additional free param-
eter for amplitude: in the previous study the data were normalized so
that the maximum was unity.

As in a previous study (Lewis and Kristan 1998b), we eliminated all
trials that had �65% of their variance explained by the cosine fit (Fig.
3B). The percentage of the variance explained on trial i is

P�i�fit � 100�1 �
SSEfit

SSEdata
� (1)

where SSEdata is the sum of the squared deviations of the data from
the mean of trial i, and SSEfit is the sum of the squared deviations of
the data from the best cosine fit for the trial.
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FIG. 3. Comparing principal component analysis (PCA) and cosine fits as measures of local bending responses. A: cosine fits to the 3 bend profiles (1–3).
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PCA. PCA is a quantitative technique that simplifies the visualization
and analysis of high dimensional datasets (Jackson 1991). We used
PCA to reduce the number of parameters needed to represent the bend
profiles. Given the set of all M-dimensional bend profiles from an
experiment, PCA generates a set of M-dimensional bend profile
components, called the principal components (PCs) of the data (e.g.,
Fig. 3C). Every trial in the original dataset can be reconstructed, or fit,
by a weighted sum of n PCs. This nth-order fit of trial i, Fi

n, is
calculated as

Fi
n����

k�1

n

�ikPCk (2)

where � is the mean of all bend profiles (i.e., the mean bend profile),
and �ik is the weight, or score, of PCk for trial i. Figure 3D shows one

such mean bend profile from an experiment as well as the first-,
second-, and third-order fits of one bend profile from the same
experiment. The PCs were obtained by diagonalization of the covari-
ance matrices of the data sets using the princomp function in Matlab.

PCs are ordered such that PC1 accounts for more variance in the
data set than PC2, PC2 accounts for more variance than PC3, and so on
(Jackson 1991). In Eq. 2, n, the number of PCs used to reconstruct the
data, must be determined. We used the number of PCs required to
ensure that �65% of the variance in every profile was explained. The
percentage of the variability explained on a given trial was calculated
using Eq. 1, where SSEdata is the sum of the squared deviations of a
given trial from �, the mean bend profile. In all experiments per-
formed in this study, this criterion was met by using three or fewer
PCs (i.e., n 	 3) to fit the data.

Once PCA was performed on the bend profiles from a data set, the
individual bend profiles could be represented as vectors containing the
first n PC scores, where n is the highest order used in Eq. 2. Because
our data could be reconstructed using a low (i.e., 1st, 2nd, or
3rd)-order fit, this representation of bend profiles in score space
greatly eased visualization and statistical analysis of the bend profiles
(Fig. 4B).

Quantifying stimulus discriminability

To quantify how well the leech discriminated touch location, we
used a classifier to determine the segregation between the response
distributions to touches at two touch locations at different stimulus
distances, 	� (Fig. 4D). A classifier is a mathematical function that
estimates which stimulus was presented based only on the behavioral
response (Duda et al. 2000). The percentage of correct stimulus
classifications depends on the degree of overlap of the response
distributions to the stimuli: if response distributions are completely
segregated, a good classifier will be correct on 100% of the trials; if
the distributions completely overlap, a good classifier will perform at
chance (50% correct in the 2-stimulus case) (Duda et al. 2000;
Thomson and Kristan 2005). We used a nearest-neighbor classifier
(Duda et al. 2000), which classifies the stimulus that produced the
response on trial i as the same as the stimulus that generated the
nearest-neighbor response, using Euclidean distance. The stimulus
estimate is correct when the nearest response was evoked by the same
stimulus and is incorrect when the nearest response was evoked by a
different stimulus.

The threshold touch-location increment, 	75(�) (sometimes called
the just noticeable difference or JND), is the distance between two
stimuli at which the classifier is 75% correct. 	75(�) is a standard
measure of threshold; for the two-stimulus case, it is halfway between
chance and perfect performance (Johnson and Philips 1981). We
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FIG. 4. Using PC scores to track touch location. A: plot of PC1 scores as a
function of touch location. The responses are color-coded by stimulus location,
as indicated on the body wall icon in the top right corner of B. Filled symbols,
means; unfilled symbols, individual responses. PC1 scores were strongly
negatively correlated with touch location (r � 
0.84). B: scatter plot of PC2

versus PC1 scores for the same 60 observations. Unfilled symbols, individual
trials; filled symbols, means � SE. The colors and symbols correspond to the
responses shown in A. The original bend profiles corresponding to the 3 boxed
observations are shown in C. C: 3 bend profiles highlighted in B, illustrating
that the PC representation of profiles preserves the similarities and differences
among the original profiles. The touch locations are indicated by color on the
abscissa. D: discrimination performance the body-wall preparation. Six prep-
arations were stimulated 12 times at each of 5 locations [156, 168, 180 (the
ventral midline), 192, and 204°] that were 12° apart. The graph plots percent
correct as a function of distance between touch locations. Solid circles, the
mean performance (�SE) of the classifier; the dotted lines, best fits to the data
points. The red line and data points are measures when the 1st 3 PC scores are
used to represent the behavioral response, and the blue line and data points are
the measures obtained using center of mass to represent the response. Filled
circles on the abscissa, the threshold values, 	75(S), obtained using the 2
different measures (i.e., �14° for PCA and �27° for CM).
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obtained 	75(�) estimates from “psychophysical” curves that plot
percent correct versus the distance between stimulus locations (Fig.
4D). We generated such curves in three steps. First, we applied a
nearest-neighbor classifier to the set of responses to two different
stimuli (e.g., Fig. 4B, squares and circles) to calculate percent correct
for a series of response pairs with inter-touch distances of 12, 24, 36,
and 48° (Fig. 4D). Second, we fit each set of percent correct values
with a saturating exponential function constrained within a minimum
of 0.5 (discrimination at chance) and a maximum of 1.0 (perfect
discrimination)

Pc�	�� � 1 � 0.5 exp� � �	�/
�� (6)

where 	� is difference in touch location distance, 
 is the value of 	�
at which the curve has increased to 64% of its maximum, and � is the
slope of the curve at that point. Third, we used the best fit of Eq. 3 to
calculate the threshold inter-touch distance, 	75(�).

We used a different, parametric method to quantify the threshold
touch-intensity increment, 	75(I), where I is touch intensity. Because

the local bend response was a nonlinear function of touch intensity
(Fig. 5C) and discrimination is better at steeper slopes, we needed to
calculate the threshold touch intensity increment as a function of
touch intensity. If there is a linear relationship between a stimulus and
the mean response to that stimulus (Fig. 5B), the threshold touch
intensity increment is

	75�I� � 2cumgauss
1�0.75, �R�/m (4)

where m is the slope of the function relating touch magnitude to the
mean behavioral response, �R is the SD of the responses, and
cumgauss
1(p,�R) is the inverse cumulative distribution function of a
Gaussian with SD �R and mean of 0. If p is a value between 0 and 1,
cumgauss
1(p,�R) calculates the response (r) in the set of all possible
responses (R) such that P(R 	 r) � p, where R has a Gaussian
distribution with SD �R and mean 0 (Larsen and Marx 2000). Note
that the applicability of Eq. 4 assumes each response distribution is
Gaussian with a SD �R (see APPENDIX for more details).

FIG. 5. PCA scores reflect changes in local
bend amplitudes evoked by different force inten-
sities at a single touch location. A: local bend
profiles at a single site in a single preparation. We
elicited 12 bends at each of 8 stimulus intensities
between 0 and 500 mN for 500 ms in random
order. Trials with no measurable response were
included. Individual trials are represented by gray
lines and the mean responses by black lines. The
arrows mark the stimulus position on the body
wall. B: PC1 score for each local bend profile
grouped by force intensity. Individual trials are
represented as gray circles and the mean score at
each stimulus force is in black. C: pooled PC1

scores for 4 leeches. The curve is a simple expo-
nential fit to the data (see APPENDIX). D: the force
discrimination threshold, 	75(S), derived from the
data in C. Discrimination of stimulus force was
best at the lower intensities (20–250 mN).
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According to Eq. 4, the steeper the slope of the function relating
touch intensity to response, the lower the threshold touch intensity
increment (i.e., the better the discrimination). To understand this
relationship, consider two extremes. First, as m goes to zero, the
threshold increment goes to infinity: all stimuli evoke the same
response and the organism cannot discriminate between stimuli.
Second, if the slope of the relationship is very steep, even very small
changes in the stimulus will evoke different responses.

Equation 4 was used to calculate the instantaneous threshold touch
intensity increment. Because the curve relating touch intensity to
response was nonlinear (Fig. 5C), we calculated 	75(I) as a function
of the slope of that curve (Fig. 5D). That is, given a slope m and SD
�R of the curve, it is possible to calculate what the threshold touch
intensity increment would be if the response had that slope at every
intensity. To calculate m we first fit the PC1 scores for each stimulus
force with a simple exponential function

PC1�I� � A�B � exp�I/C� (5)

where the function has an asymptote at AB and a y intercept at A(B 

1). The curve is overlaid on the mean PC1 scores in Fig. 5C. Second,
we calculated the derivative m of the best fit to Eq. 5 at each touch
intensity. Because �, the SD of the response, increased linearly with
touch intensity (Fig. 5C), we fit a straight line through these points.
We inserted the estimates of m and �R from this line into Eq. 4 to
estimate the threshold touch intensity increment, 	75(I), as a function
of stimulus intensity.

We used Eq. 4 to compare our estimates of touch-location discrim-
ination to previous estimates that used the root-mean-squared (RMS)
distances between touch locations and the locations of the peak EMG
response (Lewis and Kristan 1998b). RMS error is an estimate of the
SD of a random variable (Zar 1999); because the responses had a
Gaussian distribution, Eq. 4 applies.

R E S U L T S

Qualitative features of the local bend

In six body-wall preparations, we stimulated 8–13 times at
five locations spaced 36° apart at circumferential intervals
along the ventral surface of the body wall. We used a 200-mN
force step that lasted 200 ms. The behavior was characterized
by a bend profile that describes the net displacement of the
body wall in the longitudinal direction 1.5 s after the onset of
the stimulus (METHODS). Figure 2A shows the mean and indi-
vidual bend profiles obtained when we delivered 12 stimuli at
the same location. Figure 2B shows the mean response for this
location as well as the mean bend profiles at four other touch
locations. These representative results show that each touch
location along the ventral surface produces a bend profile with
two peaks located near the lateral edges. This bimodality was
not previously reported (Lewis and Kristan 1998a), probably
because previous techniques sampled fewer locations.

Comparing methods for quantifying behavior

To quantify how well the leech discriminates touch location
and intensity, we needed to measure the responses on individ-
ual trials. To find the best method, we compared four ways to
summarize the bend profiles: maximum, center of mass, cosine
fit, and PCA.

MAXIMUM. We first represented the bend profiles using the
location and magnitude of their maxima (Fig. 2C). A polar plot
of the maxima from one experiment (Fig. 2D) shows that the
maximal values segregate into two clusters. This pattern was

seen in five of the six preparations. This bimodal clustering
directly reflects the two peaks in the bend profiles (Fig. 2B).
The relative heights of these peaks varied with touch location,
so that the measured maximum was whichever of the two
peaks was larger. The details of the clustering in Fig. 2D
indicate some stimulus-dependent segregation: the stimuli to
the left of the ventral midline produced peak responses near the
left lateral edge, and stimuli to the right produced peak re-
sponses on the right side (Fig. 2F). This preparation showed a
left-side bias: stimuli on the ventral midline tended to produce
larger responses on the left side.

CIRCULAR CENTER OF MASS. Using center of mass to represent
response location (Fig. 2C) produced a broader range of
responses (Fig. 2E). Qualitatively, this measure tracked the
stimulus well: the clusters of response vectors in Fig. 2E
progress from left lateral edge through the ventral midline to
the right lateral edge in the same order as the stimulus pro-
gression (Fig. 2G). (This measure, too, showed the leftward
response bias in this experiment: the responses tended to be
clustered to the left of the stimulus site). We next calculated
whether the center of mass tended to be centered at the location
of touch. We pooled the centers of mass from all six experi-
ments after normalizing response amplitude to the maximum in
each experiment. For four of the five touch locations, the mean
location of the center of mass was found to be significantly
different from the stimulus location (� � 0.05, V test) (Zar
1999).

Although the center of mass proved to be a more useful
summary of the local bend response than the maximum, it
leaves out the spatial detail of the bend profiles. To capture
such detail, we evaluated two methods that explicitly represent
the entire bend profile: cosine fits and PCA.

COSINE FITS. In a previous study, a cosine was fit to EMG
responses to touch stimuli measured at four locations along a
relatively narrow (135°) band of the leech body wall (Lewis
and Kristan 1998b). The cosine fit proved to be below criterion
(65% of the variance explained) in more than a third of the
trials in that study, but these poor fits might be improved by
applying our more sensitive optic flow measurements. We
explored this possibility by fitting cosines to the bend profiles
generated by optic flow.

Using nonlinear least squares, we fit each bend to a cosine.
Such a fit for three individual bend profiles in a single prepa-
ration, stimulated twice at the same mid-ventral location and
once more laterally (Fig. 3A), shows that a cosine provided a
poor fit to the responses in Fig. 3A, 1 and 2, explaining only 51
and 58% of the variance, respectively. Over all trials in the
experiment, 16 of the 60 fits explained �65% of the variance
(Fig. 3B). Over all six experiments, 20% of trials had to be
rejected by the 65% criterion. This is better than the 35%
rejection rate obtained using EMG recordings (Lewis and
Kristan 1998b), but it is still a large percentage of the data.

PCA. We used the bend profiles from each preparation to
generate a set of principal components, PCs (Fig. 3C). The PC
shapes in Fig. 3C are representative of the results seen when
the leech was touched at multiple locations; e.g., PC1 was
typically sinusoidal with a zero crossing near the ventral
midline, whereas PC2 had two positive peaks that were closer
together than the peaks for PC1.
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We fit each bend profile with a weighted sum of the PCs
(Fig. 3D): the first-order fit is the mean plus a scaled copy of
PC1, the second-order fit is the first-order fit plus a scaled copy
of PC2, and the third-order fit is the second-order fit plus a
scaled copy of PC3. The scaling factors of the PCs are called
scores. For example, in Fig. 3B, the PC1 score is 32, the PC2

score is 44, and the PC3 score is 
22. (A negative value means
that the PC curve was reflected about the y axis before it was
summed with the other values.) For the trial shown, the
third-order fit is nearly indistinguishable from the actual bend
profile. For all 406 trials in six experiments, (Fig. 3E, 1–3), the
first-, second-, and third-order PCs accounted for �65% of the
variance in all but one trial. Comparing Fig. 3, E3 and B, shows
that PCA with three free parameters provided a much more
accurate representation of the bend profiles than did cosine fits,
which also had three free parameters. Hence, for all the
experiments on touch-location discrimination, we used the
scores of PC1, PC2, and PC3 to represent each bend profile.

PC scores vary with stimulus location

We found that, qualitatively, PC1 scores closely track the
stimulus: when the leech is touched to the left of the ventral
midline they tend to be positive, and when the leech is touched
to the right they tend to be negative (Fig. 4A). Quantitatively,
stimulus location and PC1 score showed a strong negative
linear correlation (r � 
0.84). In fact, the PC1 scores distin-
guished the responses to stimuli presented near the right lateral
edge (blue diamonds at 252o in Fig. 4A) from all other
locations; i.e., these PC1 scores do not overlap with any of the
scores from the other locations. The scores at 216° are less
completely distinguished from stimuli delivered at 108 and
180°, and there is significant overlap among the scores for 108,
144, and 180°.

We found, not surprisingly, that using PC1 along with PC2
helped to make finer distinctions (Fig. 4B). Responses to the
same stimulus clustered together in score space in the PC1
versus PC2 plots, and clusters for different stimulus locations
tended to be separate. For instance, the responses from touches
to location 180° (green circles) were completely separated
from those at 108° (red squares). The responses at 144° still
overlapped with both the 108 and 180° responses but less than
when using PC1 scores alone. For this example, the five
locations were separable by the 	75(�) criterion (see following
text) by using just the PC1 and PC2 scores, without using the
PC3 scores at all. In many cases, however, using PC3 scores did
produce finer distinctions, so we usually used all three scores.

The bend profiles with markedly different PC scores were
very different from one another, whereas those with similar PC
scores were quite similar (Fig. 4C). In this example, the bend
profiles for points 1 and 2 in Fig. 4B had nearly identical
movement profiles (Fig. 4C), whereas point 3 had a very
different profile. This specific example illustrates the general
feature of PCA that PC score space preserves the distance
relations among individual observations (Jackson 1991).

The experiments described so far examined the response to
ventral stimulation exclusively. To determine the generality of
our results, we repeated the experiments, stimulating the leech
at five locations along the dorsal midline (n � 2) and lateral
edge (n � 2). The PCs in these cases had the same qualitative

shape as in the experiments on the ventral surface (data not
shown).

Discrimination of touch location

We measured how far apart two stimuli needed to be for the
leech body wall to produce different responses measured by
their two-point discrimination (i.e., threshold touch-location
increment), 	75(�). We delivered 200-mN stimuli for 200 ms
to the skin at five locations separated by just 12° along the
ventral surface in six preparations (n � 6). We chose a 200-ms
duration because a previous study found that P cells delivered
all their information about touch location within 200 ms of
stimulus onset (Lewis and Kristan 1998a). This experiment
tested whether leech behavior could discriminate such short
stimulus durations. In one example (Fig. 4D), we show the
best-fit lines for the two best measures of PCA (red) and center
of mass (blue). In this and all other cases, we measured a finer
two-point discrimination between two stimuli [	75(�) was, on
average, 7.8° less] for PCA than for center of mass. The mean
two-point threshold using PCA was 18.7 � 4.7°, correspond-
ing to an absolute distance of �1 mm in a leech 2 cm in
circumference.

Discrimination of stimulus intensity

Previous studies, using force transducers and EMG signals
(Kristan 1982; Lewis and Kristan 1998a–c), showed that the
amplitude of the local bending response increases at greater
stimulus intensities. We confirmed this qualitative finding
using optic flow-derived bend profiles and PCA (Fig. 5A). This
analysis also allowed us to determine quantitatively how well
leeches discriminate between stimuli of different magnitudes at
a single location. These bend profiles show a clear increase in
response amplitude with increased stimulus intensity, a rela-
tionship reflected in the PC1 score for these trials (Fig. 5B).
Because the bend profiles at different intensities were so
similar in shape, only PC1 was needed to fit the profiles
accurately.

To compare data across leeches, we normalized each PC1
score to the maximal score in each leech (Fig. 5C). The curve
in Fig. 5C is the best exponential fit to the pooled data. The
steeper slope at lower force intensities means that the leech
discriminates intensity better at lower intensities. This depen-
dence of the touch magnitude threshold on stimulus intensity is
quantified in Fig. 5D, which plots the threshold touch-intensity
increment, 	75(I), versus touch intensity (see METHODS). This
plot means, for example, that because a stimulus force of 50
mN has a threshold increment value of �40 mN, stimuli
needed to be �90 mN to be distinguishable from responses
elicited by 50-mN stimuli and that a stimulus needed to be
�490 mN to be distinguishable from a response to a 200-mN
stimulus. The stimulus set covers the dynamic range of local
bending because stimulus forces �500 mN damage the leech
body wall and activate nociceptive (N) neurons, which produce
writhing responses rather than local bending.

Stimulus duration affects the discrimination of
stimulus intensity

Varying stimulus duration and examining how discrimina-
tion performance is affected provides insight as to how long
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sensory information must be available to perform a given type
of discrimination (Hernandez et al. 1997; Werner 1980). A
previous study (Lewis and Kristan 1998a) concluded that touch
location was encoded by the P cell responses within 200 ms of
stimulus onset: the neuronal encoding of the response was not
more accurate with longer stimuli. We found, however, that
varying the stimulus duration affected the behavioral discrim-
ination of touch intensity. Figure 6A shows a representative set
of mean bend profiles that were produced by different stimulus
intensities and durations for one body-wall preparation. In
general, we found that the bend responses generated by stimuli
lasting 200 ms were the same shape but smaller than those
elicited by 500-ms stimuli of the same intensity. In the three
leeches tested, the mean responses to 500-ms stimuli were
significantly larger than the responses to 200-ms stimuli at a
given intensity except at the very lowest intensities (20 and 50
mN; 2-sided t-test, P 	 0.01).

Averaging data across leeches, the responses to 500-ms
stimuli have much lower force discrimination thresholds than
do the responses to the 200-ms stimuli (Fig. 6C). Because the
behavior saturates at the higher force intensities, the threshold
values approach infinity for both 200- and 500-ms stimuli.
However, even at 200 mN, the threshold for the 500-ms stimuli
is 100 mN lower than the 200-ms stimuli. These data show that
the leech’s ability to discriminate touch intensity improves
with the 500 as stimulus duration.

D I S C U S S I O N

This study determines some basic psychophysics of the local
bending response in the body-wall of the medicinal leech. It
asks how far apart two tactile stimuli need to be judged as
different, how different two stimulus intensities must be to be
judged as different, and how stimulus duration affects intensity
judgments. We analyzed these data using a variety of mea-
sures, settling on PCA of optical-flow data as the best measures
of the localization and the amplitude of stimuli delivered
around the circumference of the segmental body-wall. We first

measured the distributions of the PCA scores that reproduced
the shapes of the bend profiles for each of the stimuli. To
determine how finely two stimuli could be discriminated from
one another, we used a nearest-neighbor classifier to quantify
whether two stimuli were detectably different.

Location discrimination

Using PCA, we calculated the mean threshold for the dis-
crimination of touch location as just under 19°, which corre-
sponds to a distance of 1 mm on a leech with a 2-cm circum-
ference. This is similar to the threshold for discriminating the
width of gratings by the human finger tip (�1.0 mm), one of
the most sensitive mechanoreceptive regions on the human
body (Philips and Johnson 1981). Grating discrimination on
the human hand is probably mediated by the slowly adapting
(SA) mechanoreceptors because vibrating the gratings to stim-
ulate the rapidly adapting (RA) mechanoreceptors did not
significantly improve discrimination. The functional distinc-
tions between RA and SA mechanoreceptors in vertebrates is
very similar to the division in leech between rapidly adapting
touch mechanoreceptors (T cells) and slowly adapting pressure
mechanoreceptors (P cells) (Carlton and McVean 1995; Ni-
cholls and Baylor 1968). The P cells are the major sensory
neurons driving the local bend response (Kristan 1982; Lewis
and Kristan 1998a; Zoccolan et al. 2002). Hence, similar
coding strategies may be used by P cells in leeches and SA
mechanoreceptors in vertebrates.

A previous study estimated touch localization in the leech as
28°, using EMG signals to estimate the midpoint of the
longitudinal component of the local bend (Lewis and Kristan
1998b). Using these data, the just noticeable difference in
touch location would be 38° (applying Eq. 4 with m � 1,
assuming response distributions in those studies were Gauss-
ian), an estimate twice the value (18.7°) obtained in this study;
this is a significant difference (P 	 0.002, 1-sided t-test). There
are at least three possible reasons for the different estimates in
the two studies. First, EMG is not a reliable indicator of the

FIG. 6. Stimulus duration affects force dis-
crimination. A: we stimulated a body wall at a
single location in the ventrolateral territory
10–13 times at 7 different force intensities for
200 and 500 ms. Each plot is an overlay of the
means responses to 6 tactile stimuli with dura-
tions of 200 ms (gray lines) or 500 ms (black
lines). B: plot of PC1 scores as a function of
stimulus force for the 2 different stimulus du-
rations. The mean and SE for the PC1 score are
plotted against stimulus force for stimulus du-
rations of 200 and 500 ms in all 6 preparations.
Exponential curves are drawn for the 200- and
500-ms groups. For the 500-ms stimuli, the
20-mN force intensity produced a small re-
sponse that was different from all other re-
sponses. The 400- and 500-mN stimuli pro-
duced responses that differed from all responses
to stimuli 	100 mN (corrected Tukey-Cramer
tests, P 	 0.05). C: plots of the force discrim-
ination thresholds, 	75(S), generated from data
of the sort shown in A. The curves fit to the data
show that intensity is better discriminated by
stimuli with 500-ms durations. For all data in B
and C, n � 6.
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total activation of muscles. We abandoned the use of EMGs
when, in preliminary experiments, we found that EMG signals
were not monotonic functions of motor neuron firing rate
(EET, unpublished observations). Second, we obtained a much
finer-grained spatial resolution: EMG signals were measured at
only four locations (Lewis and Kristan 1998b), whereas our
video-based method characterized the bend profiles at 500–
640 locations. Third, the previous analysis did not include
signals during the 500-ms period of stimulation because that
period was thought to be dominated by motor neurons (L cells)
that cause bilateral contractions rather than localized bending.
It is possible that this initial burst of motor activity should not
be ignored.

Intensity discrimination

In the leech mechanosensory system, as in other animals,
discriminating between stimulus intensities depends on the
absolute intensity of the stimulus. In human psychophysical
studies, the relationship between the magnitude of punctate
indentation of the skin and the subjective intensity rating
reported is often described by a power function (Vega-Bermu-
dez and Johnson 1999). We performed similar analyses in the
leech, comparing absolute stimulus intensity to the PC1 scores
that summarize the behavior. We found that a simple exponen-
tial function accurately described the relationship between
touch intensity and observed behavior. This exponential fit
enabled us to compare the absolute stimulus intensity to the
threshold intensity increment values [i.e., 	75(I)]. The obser-
vation that the leech discriminates best at lower force intensi-
ties and that discriminative ability falls off linearly as the
stimulus intensity is increased is similar to other systems where
the thresholds [e.g., JNDs or 	75(I) values] are proportional to
the absolute stimulus intensity (Johnson et al. 1996).

We found that intensity discrimination improves greatly
with stimulus duration (Fig. 6C), an effect seen in other
animals. For instance, to discriminate accurately between me-
chanically delivered sinusoids that differed only in frequency,
monkeys required stimulus durations of �250 ms (Hernandez
et al. 1997), suggesting to the authors that discriminating the
magnitude of a sensory input may require different processing
than discriminating the location of the sensory input. Based on
our own and previous work (Lewis and Kristan 1998a), leeches
discriminate touch location very well within 200 ms of stim-
ulus onset. However, the ability to discriminate touch intensity
with a 200-ms stimulus is improved when the stimulus is
presented for 500 ms. The neural underpinning of these differ-
ent abilities can be further explored by recording from neurons
in the local bend network during mechanical stimulation at
these different durations.

Limitations of present study

Our methods for quantifying behavioral discrimination of
touch location and intensity provide upper bounds on how well
the leech behaviorally discriminates touch location. It is pos-
sible that someone could show, using more precise measures of
stimuli, leech behavior or classification algorithms that the
leech discriminates better than we have estimated here. In
particular, we ignored two aspects of the local bend response in
our analysis. First, we did not analyze movement along the

circular axis of the body wall. Leeches do display circular
movements during local bending (Zoccolan and Torre 2002),
and the ventral P cell has a strong synaptic connection to CV,
a ventral circular motor neuron (EET, unpublished observa-
tion). In this study, we have focused solely on contractions in
the longitudinal direction because longitudinal contractions
tend to dominate the local bending response (Kristan 1982) and
the stimulator arm obstructs the body wall in the location
where circular contractions tend to be greatest on the body
wall. The second aspect we ignored was the temporal evolution
of the local bend response; we analyzed only one time slice
from a behavior that lasts many seconds (Fig. 1G). It will be an
interesting question for future research to determine how the
leech’s ability to discriminate location and magnitude depends
on time.

Comparison of methods for quantifying local bending

We used four methods to summarize the local bend profiles:
the maximum, center of mass, cosine fits, and PCA. The goal
was to find a method that gave a compact summary of the bend
profile that would allow us to quantitatively evaluate how well
the leech discriminates touch location and intensity. The max-
imum was ineffective because each bend profile often had two
peaks, and because each peak was at the same location wher-
ever the stimulus was located, the maximum was always at one
of these two locations (Fig. 2B, D and F). The cosine fits
provided a poor fit to the data (Fig. 3, A and B). The center of
mass provided a useful measure of the behavior, certainly
better than maximum (compare Fig. 2E with D), but PCA
provided both an accurate representation of the entire bend
profile (Fig. 3E) and was the most sensitive indicator of
stimulus location (Fig. 4D). We propose that PCA is a very
useful measure of behavior of various sorts (D’Avella and
Bizzi 1998).

Comparison with previous studies

The present study uses optic flow fields in a different and
complementary manner to previous studies (Zoccolan et al.
2001). Previously, the optic flow field was used to construct a
six-parameter model of active body-wall deformations, based
on linear deformation theory (Giachetti and Torre 1996). This
model required each optic flow field to have a single stationary
point where no movement occurs. The linear deformation
model accounted quite well for movement on small regions of
the body wall (Zoccolan et al. 2001). However, when we
applied the same model to large regions of the body wall, the
fits to the data were not as good. Also, we failed to consistently
observe stationary points when we stimulated the body wall
mechanically, a necessity for using the linear deformation
model. By using PCA, we could look at an optic flow window
that spanned the entire circular axis of the leech, allowing us to
look at the overall behavior. In both analyses (i.e., linear model
or PCA description of behavior), the optic flow algorithm,
originally developed for computer vision applications, yields
sensitive and quantitative motion estimates that can be related
to stimulus parameters.

PCA and implications for the organization of motor output

A previous study used PCA to examine the isometric force
fields generated by a single hind limb after stimulating su-
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praspinal brain regions in the frog (D’Avella and Bizzi 1998).
They observed that five principal components accounted for
�95% of the variation in their force field data. They suggested
that these five components might correspond to “modules” or
building blocks that are consistently co-activated and combine
linearly to produce the wiping reflex of the frog’s leg. Simi-
larly, just three principal components explained our local
bending data and allowed us to characterize the touch and
intensity discrimination capacities of the leech. Because the
local bend circuitry is well mapped and relatively simple, it is
now possible to directly manipulate individual neurons while
simultaneously quantifying the changes in behavior using
video tracking and PCA. These types of studies should vastly
improve our understanding of how sensory information is used
to produce behaviors in the leech.

Appendix: derivation of Eq. 4

Assume that two stimuli, s1 and s2, are presented with equal
likelihood and that each stimulus evokes a Gaussian distribu-
tion of responses, P(R�s1) and P(R�s2), both with the same SD

�R but with different means �1 � 0 and �2, respectively (Fig.
A1A). (Setting �1 to 0 does not affect the generality of the
results that follow, but serves to simplify the calculations.)

Given these assumptions, the performance of an ideal ob-
server, also called a minimum error classifier (Duda et al.
2000), is achieved by following the maximum likelihood rule:
given a response r from the set of all possible responses R,
classify r as being evoked by the stimulus si such that P(r�si) �
P(r�sj). The maximum likelihood rule generates a decision
boundary, r* (Fig. A1A), which is the value of R above which
s2 is chosen and below which s1 is chosen (Duda et al. 2000).
r* is the value half-way between the peaks of the two response
distributions; it marks the value at which the classifier operates
at chance performance (i.e., 50% correct). Because r* lies
halfway between �1 and �2, it follows that �2 � 2r*. The
probability of a classification error is the area of overlap under
the curves 0.5P(R�s1) and 0.5P(R�s2), which is the shaded
region in Fig. A1A (Thomson and Kristan 2005). Therefore
determining 	75(�R�s), the distance between the means of the
two distributions at which an ideal observer would perform at
75% correct, is reduced to finding the distance, 2r*, at which
the area of overlap is 25% of the total area.

The value of R beyond which 12.5% of the area in P(R�s1)
lies (i.e., r.125) is determined by

�
r0.125

� 1

2
P�R�S1� � 0.125 (A1)

If P(R�s1) is Gaussian, as we are assuming, then the solution to
Eq. A1 is

r0.125 � cumgauss
1�0.75, �R� (A2)

where cumgauss
1(p,�R), denotes the inverse cumulative dis-
tribution function of a Gaussian with SD �R and a mean of 0
(Larsen and Marx 2000). In a system with a decision boundary
value r* equal to r0.125, the contribution that P(R�s1) makes to
the area of overlap between P(R�s1) and P(R�s2) is the area
located to the right of r*, an area that we chose to be 0.125.
Because P(R�s1) and P(R�s2) are symmetric about r*, P(R�s2)
contributes the same overlap area to the left of r*. The sum of
the contributions of P(R�s1) and P(R�s2) is 0.25, which is the
overlap at threshold we are seeking. Hence, the distance
between the means of the Gaussians at threshold is

	75��R�s� � 2r* � 2cumgauss
1�0.75, �R� (A3)

Using Eq. A3, if we have an estimate of �R, we can calculate
	75(�R�s). However, 	75(�R�s) measures how far apart two
distributions must be in response space, whereas the goal is to
calculate the corresponding distance in stimulus space, 	75(S),
which would produce response means separated by 	75(�R�s).
To calculate 	75(S), we first assume that the response mean
changes linearly with the stimulus. That is

�R�s � ms (A4)

where �R�s is the expected value of R in response to stimulus s,
and m is the slope of the line relating the variables. Figure A1B
illustrates this assumption: for each stimulus, there is a Gauss-
ian distribution of responses, and as the stimulus value in-
creases, the mean of the corresponding Gaussian increases
linearly. From Eq. A4, it follows that 	75(�R�s)/	75(S) � m, so

FIG. A1. Derivation of Eq. 4. A: 2 hypothetical, identical Gaussian distri-
butions of responses, P(R�s1) and P(R�s2), to 2 stimuli, s1 and s2. r* is the
decision boundary value used by a maximum likelihood decoder to “decide”
whether s1 was presented (if R � r*) or s2 was presented (if R � r*). B:
theoretical input/output function in which a Gaussian response with mean �R�S
is evoked by stimulus S, and �R�S increases linearly with S. Three of the
response distributions (to arbitrary stimuli s1–s3) are shown for illustrative
purposes. The SD �s of the response at each S is assumed to be the same.

3571LOCATION AND INTENSITY DISCRIMINATION IN LEECH

J Neurophysiol • VOL 93 • JUNE 2005 • www.jn.org

 at U
niv C

A
 (C

A
 D

igital Lib) on A
pril 10, 2013

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


	75�S� � 	75��R�s�/m � 2cumgauss
1�.75, �R�/m (A5)

where the second equality is obtained by the use of Eq. A3.
This is Eq. 4, the equation we intended to prove.
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